Шаг 21.
Стоимость ресурсов

    На этом шаге мы рассмотрим анализ модели на чувствительность и определим стоимость ресурсов задачи линейного программирования.

    Во многих моделях линейного программирования ограничения трактуются как условия ограниченности ресурсов. В таких ограничениях правая часть неравенств является верхней границей количества доступных ресурсов. Рассмотрим чувствительность оптимального решения к изменению ограничений, накладываемых на ресурсы.

    Такой анализ задачи ЛП предлагает простую меру чувствительности решения, называемую стоимостью единицы ресурса; при изменении количества доступных ресурсов (на единицу) значение целевой функции в оптимальном решении изменится на стоимость единицы ресурса.

    Проиллюстрируем этот вид анализа задачи ЛП на следующем примере.


    Пример 1. В модели для компании "Русские краски" первые два неравенства представляют собой ограничения на использование сырья M1 и М2 соответственно. Определим стоимость единиц этих ресурсов.

    Начнем с ограничения для сырья M1. Напомним, что в данной задаче оптимальное решение достигается в угловой точке С, являющейся точкой пересечения прямых, соответствующих ограничениям на сырье M1 и М2 (рис. 1).


Рис. 1. Стоимость ресурса М1

    При изменении уровня доступности материала M1 (увеличение или уменьшение текущего уровня, равного 24 т) точка С оптимального решения "плывет" вдоль отрезка DG. Любое изменение уровня доступности материала M1, приводящее к выходу точки пересечения С из этого отрезка, ведет к неосуществимости оптимального решения в точке С. Поэтому можно сказать, что концевые точки D = (2, 2) и G = (6, 0) отрезка DG определяют интервал осуществимости для ресурса M1. Количество сырья M1, соответствующего точке D = (2, 2), равно 6x1 + 4x2 = 6*2 + 4*2 = 20 т.

    Аналогично количество сырья, соответствующего точке G = (6, 0), равно 36 т.

    Таким образом, интервал осуществимости для ресурса M1 составляет 20 ≤ M1 ≤ 36 (здесь через M1 обозначено количество материала M1). Если мы определим М1 как M1 = 24 + D1, где D1 — отклонение количества материала М1 от текущего уровня в 24 т, тогда последние неравенства можно переписать как 20 ≤ 24 + D1 ≤ 36 или -4 ≤ D1 ≤ 12. Это означает, что текущий уровень ресурса M1 может быть уменьшен не более чем на 4 т и увеличен не более чем на 12 т. В этом случае гарантируется, что оптимальное решение будет достигаться в точке С — точке пересечения прямых, соответствующих ограничениям на ресурсы M1 и М2.

    Теперь вычислим стоимость единицы материала M1. При изменении количества сырья M1 от 20 до 36 тонн, значения целевой функции z будут соответствовать положению точки С на отрезке DG. Обозначив через y1 стоимость единицы ресурса M1, получим следующую формулу:

    Если точка С совпадает с точкой D = (2, 2), то z = 5*2 + 4*2 = 18 (тысяч д.e.), если же точка С совпадает с точкой G = (6, 0), тогда z = 5*6 + 4*0= 30 (тысяч д.e.). Отсюда следует, что

(тысяч д.е. на тонну материала M1).

   Этот результат показывает, что изменение количества ресурса M1 на одну тонну (если общее количество этого ресурса не меньше 20 и не больше 36 тонн) приводит к изменению в оптимальном решении значения целевой функции на 750 д.е.

   Теперь рассмотрим ресурс М2.


Рис. 2. Стоимость ресурса М2

    На рис. 2 видно, что интервал осуществимости для ресурса М2 определяется концевыми точками В и H отрезка ВН, где В = (4, 0) и Н= (8/3, 2). Точка Н находится на пересечении прямых ED и ВС. Находим, что количество сырья М2, соответствующего точке В, равно x1 + 2х2 = 4 + 2*0 = 4 т, а точке Н8/3+2*2= 20/3 т. Значение целевой функции в точке В равно 5x1 + 4х2 = 5*4 + 4*0 = 20 (тысяч д.e.), а в точке Н5*8/3 + 4*2 = 64/3 (тысяч д.e.). Отсюда следует, что количество сырья М2 может изменяться от 4 до 20/3 тонн, а стоимость единицы ресурса М2, обозначенная как у2, равна

(тысяч д.е. на тонну материла M2).

    На следующем шаге рассмотрим несколько задач.



Предыдущий шаг Содержание Следующий шаг