Шаг 8.
Теоретическая информатика. Кодирование информации в теории Шеннона.
Математическая постановка задачи кодирования

    На этом шаге мы рассмотрим математическую постановку задачи кодирования.

    Не обсуждая технических сторон передачи и хранения сообщения (т.е. того, каким образом фактически реализованы передача-прием последовательности сигналов или фиксация состояний), попробуем дать математическую постановку задачи кодирования.

    Пусть первичный алфавит A содержит N знаков со средней информацией на знак, определенной с учетом вероятностей их появления, I1(A) (нижний индекс отражает то обстоятельство, что рассматривается первое приближение, а верхний индекс в скобках указывает алфавит). Вторичный алфавит B пусть содержит M знаков со средней информационной емкостью I1(A). Пусть также исходное сообщение, представленное в первичном алфавите, содержит n знаков, а закодированное сообщение – m знаков. Если исходное сообщение содержит I(A) информации, а закодированное – I(B), то условие обратимости кодирования, т.е. неисчезновения информации при кодировании, очевидно, может быть записано следующим образом:

I(A)I(B),

смысл которого в том, что операция обратимого кодирования может увеличить количество формальной информации в сообщении, но не может его уменьшить. Однако каждая из величин в данном неравенстве может быть заменена произведением числа знаков на среднюю информационную емкость знака, т.е.:

    Отношение m/n, очевидно, характеризует среднее число знаков вторичного алфавита, которое приходится использовать для кодирования одного знака первичного алфавита – будем называть его длиной кода или длиной кодовой цепочки и обозначим K(B) (верхний индекс указывает алфавит кодов).

    В частном случае, когда появление любых знаков вторичного алфавита равновероятно, согласно формуле Хартли I1(B)=log2M, и тогда

(1)

    По аналогии с величиной R, характеризующей избыточность языка, можно ввести относительную избыточность кода (Q):

(2)

    Данная величина показывает, насколько операция кодирования увеличила длину исходного сообщения. Очевидно, чем меньше Q (т.е. чем ближе она к 0 или, что то же, I(B) ближе к I(A)), тем более выгодным оказывается код и более эффективной операция кодирования. Выгодность кодирования при передаче и хранении – это экономический фактор, поскольку более эффективный код позволяет затратить на передачу сообщения меньше энергии, а также времени и, соответственно, меньше занимать линию связи; при хранении используется меньше площади поверхности (объема) носителя. При этом следует сознавать, что выгодность кода не идентична временнóй выгодности всей цепочки кодирование – передача – декодирование; возможна ситуация, когда за использование эффективного кода при передаче придется расплачиваться тем, что операции кодирования и декодирования будут занимать больше времени и иных ресурсов (например, места в памяти технического устройства, если эти операции производятся с его помощью).

    Выражение (1) пока следует воспринимать как соотношение оценочного характера, из которого неясно, в какой степени при кодировании возможно приближение к равенству его правой и левой частей. По этой причине для теории связи важнейшее значение имеют две теоремы, доказанные Шенноном. Первая – ее мы сейчас рассмотрим – затрагивает ситуацию с кодированием при передаче сообщения по линии связи, в которой отсутствуют помехи, искажающие информацию. Вторая теорема относится к реальным линиям связи с помехами.

    На следующем шаге мы рассмотрим первую теорему Шеннона.




Предыдущий шаг Содержание Следующий шаг