Шаг 124.
Алгоритм Флойда

    На этом шаге мы рассмотрим алгоритм Флойда.

    Этот алгоритм более общий по сравнению с алгоритмом Дейкстры, так как он находит кратчайшие пути между любыми двумя узлами сети. В этом алгоритме сеть представлена в виде квадратной матрицы с n строками и n столбцами. Элемент (i, j) равен расстоянию dij от узла i к узлу j, которое имеет конечное значение, если существует дуга (i, j), и равен бесконечности в противном случае.

    Покажем сначала основную идею метода Флойда. Пусть есть три узла i, j и k и заданы расстояния между ними (рис. 1). Если выполняется неравенство dij + djk < dik, то целесообразно заменить путь i -> k путем i -> j -> k. Такая замена (далее ее будем условно называть треугольным оператором) выполняется систематически в процессе выполнения алгоритма Флойда.


Рис.1. Треугольный оператор

    Алгоритм Флойда требует выполнения следующих действий.

    Шаг 0. Определяем начальную матрицу расстояния D0 и матрицу последовательности узлов S0. Диагональные элементы обеих матриц помечаются знаком "-", показывающим, что эти элементы в вычислениях не участвуют. Полагаем k = 1:


Рис.2. Начальная ситуация

    Основной шаг k. Задаем строку k и столбец k как ведущую строку и ведущий столбец. Рассматриваем возможность применения треугольного оператора ко всем элементам dij матрицы Dk-1. Если выполняется неравенство dik + dkj < dij, (i <> k, j <> k, i <> j), тогда выполняем следующие действия:

    Поясним действия, выполняемые на k-м шаге алгоритма, представив матрицу Dk-1 так, как она показана на рисунке 3. На этом рисунке строка k и столбец k являются ведущими. Строка i - любая строка с номером от 1 до k - 1, а строка p - произвольная строка с номером от k + 1 до n. Аналогично столбец j представляет любой столбец с номером от 1 до k - 1, столбец q - произвольный столбец с номером от k + 1 до n. Треугольный оператор выполняется следующим образом. Если сумма элементов ведущих строки и столбца (показанных в квадратах) меньше элементов, находящихся в пересечении столбца и строки (показанных в кружках), соответствующих рассматриваемым ведущим элементам, то расстояние (элемент в кружке) заменяется на сумму расстояний, представленных ведущими элементами:


Рис.3. Иллюстрация алгоритма Флойда

    После реализации n шагов алгоритма определение по матрицам Dn и Sn кратчайшего пути между узлами i и j выполняется по следующим правилам.

  1. Расстояние между узлами i и j равно элементу dij в матрице Dn.
  2. Промежуточные узлы пути от узла i к узлу j определяем по матрице Sn. Пусть sij = k, тогда имеем путь i -> k -> j. Если далее sik = k и skj = j, тогда считаем, что весь путь определен, так как найдены все промежуточные узлы. В противном случае повторяем описанную процедуру для путей от узла i к узлу k и от узла k к узлу j.


    Пример. Найдем для сети, показанной на рисунке 4, кратчайшие пути между любыми двумя узлами. Расстояние между узлами этой сети проставлены на рисунке возле соответствующих ребер. Ребро (3, 5) ориентированно, поэтому не допускается движение от узла 5 к узлу 3. Все остальные ребра допускают движение в обе стороны:


Рис.4. Пример сети

    Шаг 0. Начальные матрицы D0 и S0 строятся непосредственно по заданной схеме сети. Матрица D0 симметрична, за исключением пары элементов d35 и d53, где d53 равно бесконечности, поскольку невозможен переход от узла 5 к узлу 3:


Рис.5. Начальное состояние

    Шаг 1. В матрице D0 выделены ведущие строка и столбец (k = 1). Двойной рамкой представлены элементы d23 и d32, единственные среди элементов матрицы D0, значения которых можно улучшить с помощью треугольного оператора. Таким образом, чтобы на основе матриц D0 и S0 получить матрицы D1 и S1, выполняем следующие действия.

  1. Заменяем d23 на d21 + d13 = 3 + 10 = 13 и устанавливаем s23 = 1.
  2. Заменяем d32 на d31 + d12 = 10 + 3 = 13 и устанавливаем s32 = 1.

    Матрицы D1 и S1 имеют следующий вид:


Рис.6. Матрицы D1 и S1

    Шаг 2. Полагаем k = 2; в матрице D1 выделены ведущие строка и столбец. Треугольный оператор применяется к элементам матрицы D1 и S1, выделенным двойной рамкой. В результате получаем матрицы D2 и S2:


Рис.7. Матрицы D2 и S2

    Шаг 3. Полагаем k = 3; в матрице D2 выделены ведущие строка и столбец. Треугольный оператор применяется к элементам матрицы D2 и S2, выделенным двойной рамкой. В результате получаем матрицы D3 и S3:


Рис.8. Матрицы D3 и S3

    Шаг 4. Полагаем k = 4, ведущие строка и столбец в матрице D3 выделены. Получаем новые матрицы D4 и S4:


Рис.9. Матрицы D4 и S4

    Шаг 5. Полагаем k = 5, ведущие строка и столбец в матрице D4 выделены. Никаких действий на этом шаге не выполняем; вычисления закончены.

    Конечные матрицы D4 и S4 содержат всю информацию, необходимую для определения кратчайших путей между любыми двумя узлами сети. Например, кратчайшее расстояние между узлами 1 и 5 равно d15 = 12.

    Для нахождения соответствующих маршрутов напомним, что сегмент маршрута (i, j) состоит из ребра (i, j) только в том случае, когда sij = j. В противном случае узлы i и j связаны, по крайней мере, через один промежуточный узел. Например, поскольку s15 = 4 и s45 = 5, сначала кратчайший маршрут между узлами 1 и 5 будет иметь вид 1->4->5. Но так как s14 не равно 4, узлы 1 и 4 в определенном пути не связаны одним ребром (но в исходной сети они могут быть связаны непосредственно). Далее следует определить промежуточный узел (узлы) между первым и четвертым узлами. Имеем s14 = 2 и s24 = 4, поэтому маршрут 1->4 заменяем 1->2->4. Поскольку s12 = 2 и s24 = 4, других промежуточных узлов нет. Комбинируя определенные сегменты маршрута, окончательно получаем следующий кратчайший путь от узла 1 до узла 5: 1->2->4->5. Длина этого пути равна 12 километрам.

    Приведем текст программы, реализующей алгоритм Флойда.

#include <iostream.h>
#define TRUE 1
#define FALSE 0
#define MaxNodes 5  //Количество вершин.
//Описание типа узла стека.
typedef struct Zveno *svqz;
typedef struct Zveno
{
  int Element;
  svqz Sled;
};

class Spisok
{
  private:
         int Mas[MaxNodes][MaxNodes];  //Матрица весов дуг.
         int DD[MaxNodes][MaxNodes];   //Матрица расстояний.
         int SS[MaxNodes][MaxNodes];   //Матрица последовательных узлов.
         svqz Stack; //Указатель на рабочий стек.
         void UDALENIE (svqz *, int *);
         void W_S (svqz *, int);
         void Small_Put (int,int);
  public:
         Spisok() {Stack = NULL;}
         void Vvod_Ves();
         void Reshenie ();
};

void main()
{
  Spisok A;

  A.Vvod_Ves();
  A.Reshenie();
}

void Spisok::Small_Put (int one, int two)
//Нахождение кратчайшего пути.
{
  svqz St=NULL; //Указатель на вспомогательный стек.
  svqz UkZv;
  int Flag=FALSE; //Флаг построения кратчайшего пути.
  int elem1,elem2,k;
  //Помещение в стек конечной и начальной вершин.
  W_S (&Stack,two);
  W_S (&Stack,one);
  while (!Flag)
  {
    //Извлекли верхних два элемента.
    UDALENIE(&Stack,&elem1);
    UDALENIE(&Stack,&elem2);
    if (SS[elem1][elem2]==elem2) //Если есть путь...
      if (elem2==two) //и это конечный узел...
      {
       Flag = TRUE;   //то кратчайший путь найден.
       W_S (&St,elem1);
       W_S (&St,elem2);
      }
      else //и это не конечный узел...
      {
       W_S (&St,elem1); //В вспомогательный стек.
       W_S (&Stack,elem2); //Обратно в рабочий стек.
      }
    else //Если пути нет.
    {
      W_S (&Stack,elem2); //Обратно в рабочий стек.
      k = SS[elem1][elem2];
      W_S (&Stack,k);     //Запомнить промежуточную вершину.
      W_S (&Stack,elem1); //Обратно в рабочий стек.
    }
  }
  UkZv = St;
  while ( UkZv != NULL )
  {  cout << (UkZv->Element+1) << " "; 
     UkZv = UkZv->Sled;  }
  cout << endl;
}

void Spisok::W_S (svqz *stk, int Elem)
//Помещение Elem в стек stk.
{
  svqz q=new (Zveno);
  (*q).Element = Elem; 
  (*q).Sled = *stk; *stk = q;
}

void Spisok::UDALENIE (svqz *stk, int *Klad)
//Удаление звена из стека, заданного указателем *stk.
//Значение информационного поля удаляемого звена сохраня-
//ется в параметре Klad.
{
  svqz q;

  if (*stk==NULL) cout<<"Попытка выбора из пустого стека!\n";
  else
	{ *Klad = (**stk).Element;
	  q = *stk; *stk = (**stk).Sled; delete q; }
}


void Spisok::Vvod_Ves()
//Ввод матрицы весов дуг заданного графа.
{
  cout << "Вводите элементы матрицы весов дуг по строкам:\n";
  for (int i=0;i<MaxNodes;i++)
   for (int j=0;j<MaxNodes;j++)
     {
       cout << "Введите Mas[" << (i+1) << "," << (j+1) << "]: "; 
       cin >> Mas[i][j];
     }
}

void Spisok::Reshenie()
{
  int one,two;
  int i,j;

  //Инициализация.
  for (i=0;i<MaxNodes;i++)
   for (j=0;j<MaxNodes;j++)
   {
     if (Mas[i][j]>0)  SS[i][j]=j;
     else SS[i][j]=0;
     DD[i][j]=Mas[i][j];
   }
   cout << "\nНачальная вершина: ";
   cin >> one; one--;
   cout << "Конечная вершина: ";
   cin >> two; two--;

   int ved=0;
   while (ved<MaxNodes)
   {
     for (i=0;i<MaxNodes;i++)
      for (j=0;j<MaxNodes;j++)
        if (i!=j && i!=ved && j!=ved &&
            DD[i][ved]>0 && DD[ved][j]>0) 
          if (DD[i][ved]+DD[ved][j]<DD[i][j] || DD[i][j]==0) 
          {
             DD[i][j]=DD[i][ved]+DD[ved][j];
             SS[i][j]=ved;
          }
          ved++;
   }
   i=one;
   if (SS[i][two]!=two && SS[i][two]!=0) 
     while (SS[i][two]!=two) 
     {
        j=SS[i][two];
        while (SS[i][j]!=j)  j=SS[i][j];
        i=j;
     }
     cout << "\nКратчайший путь (в обратном порядке): ";
     Small_Put (one, two);
     cout << "Длина минимального пути между этими вершинами: " << DD[one][two];
}
Текст этой программы можно взять здесь.

    Результат работы этой программы для сети, изображенной на рисунке 4, будет следующим:


Рис.10. Результат работы приложения

    На следующем шаге мы рассмотрим задачу о максимальном потоке.




Предыдущий шаг Содержание Следующий шаг